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charge effect, we need an increase in V of about 0.6% in 
order to bring the contribution of the isotropic mean-
free-path effect to 3TC up to a value ap= 0.93°KX0.060 
= 0.05°K. (Gayley et al.11 concluded from their data 
that alloying must increase V.) 

Pippard13 was apparently the first to consider the 
effect of decreased electron mean free path on F. He 
stated that this must always decrease V for an isotropic 
metal. However, he considered only longitudinal 
phonons in his analysis. The transverse phonons also 
contribute to V, and they would tend to increase V 
when the mean free path decreases.14 I t is possible that 
this problem will be clarified by further theoretical 
examination, taking proper account of the contribution 
of the different phonon modes, and including many-
body effects. 
H| In principle, the lattice parameter changes which ac
company alloying can also influence <a, N, and V. 
However, these changes are so small15 that one is not 
surprised that they can be ignored. 

13 A. B. Pippard,'Phys. Chem. Solids 3, 175 (1957). 
14 A. B. Pippard, Phil. Mag. 46, 1104 (1955). 
15 J. A. Lee and G. V. Raynor, Proc. Phys. Soc. (London) B67, 

737 (1954). For the indium alloys, see the references in Hansen's 
book (Ref. 4). 

I. INTRODUCTION 

EXPERIMENTS on ultrasonic attenuation have 
proved to be a most useful way of gaining informa

tion about the nature of the superconducting state.1 Be
cause of experimental difficulties, mostly connected with 
sample preparation, these studies have hitherto been 

t Supported in part by U. S. Army Research Office (Durham). 
* Alfred P. Sloan Fellow. 
f Present address: Physics Department, Universitet A. M. 

Gorkii, Kharkov, Ukraine, USSR. 
1 See, for example, J. R. Leibowitz, Phys. Rev. 133, A84 (1964); 

R. Weber, Phys. Rev. 133, A1487 (1964); E. R. Dobbs and J. M. 
Perz, Rev. Mod. Phys. 36, 257 (1964); R. E. Love and R. W. 
Shaw, Rev. Mod. Phys. 36, 260 (1964); P. A. Bezuglyi, A. A. 
Galkin, and A. P. Korolyuk, Zh. Eksperim. i Teor. Phys. (USSR) 
39, 7 (1960) [English transl.: Soviet Phys.—JETP 12, 4 (1961)]. 

Since completion of this work, it has been pointed out 
to me by Dr. D. Markowitz that his Ph.D. thesis 
(University of Illinois, 1963, unpublished) contains a 
prior attempt to analyze the valence effect into a part 
proportional to nlbz and a part proportional to p, for 
the tin and aluminum alloys (not for the indium alloys). 
Our limitation of the discussion to alloys in which the 
solute is completely dissolved removes several of Dr. 
Markowitz's apparent exceptions to the hypothesis on 
which this analysis is based. Our comparison of the 
results of the analysis with measurements by Glover and 
Sherrill provides new support for this hypothesis. For a 
treatment of some of the physical mechanisms which are 
responsible for the charge effect and the isotropic mean 
free path effect, the reader is referred to Dr. Marko
witz's thesis. 
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limited to superconductors which contain a negligible 
percentage of magnetic impurities. In this paper, we 
have attacked the problem of calculating the attenua
tion coefficients in materials containing larger percent
ages of magnetic impurities in the hope that our work 
might encourage future experimental work on these 
materials. 

As Abrikosov and Gor'kov2 first pointed out, super
conductors with magnetic impurities are uniquely 
interesting because they have superconducting proper
ties even in the absence of an energy gap. This behavior 

2 A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. 
Phys. (USSR) 39, 1781 (1960) [English transl.: Soviet Phys.— 
JETP 12, 1243 (1961)]. 
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has been qualitatively verified by Reif and Woolf,3 

although the quantitative fit between theory2 and this 
tunneling experiment seems far from perfect. 

Our physical model for the superconductor is essen
tially identical to that of Ref. 2. We assume a weak-
coupling electron-gas model for the superconductor very 
similar to the original model used by Bardeen, Cooper, 
and Schrieffer.4 This superconductor has in it randomly 
placed impurities, some of which are assumed to have 
a spin attached. The directions of the impurity spin 
vectors are taken to be random. An interaction propor
tional to the scalar product of the electronic spin with 
the impurity spin causes electronic spin flip and thereby 
seriously modifies the nature of the electronic state. 
The effect of impurities is described by two parameters 
Tn and Ts, which are, respectively, the rate of normal 
and spin-dependent scattering for a normal-state 
electron. 

We employ this model to calculate several electronic 
time-dependent correlation functions by a method very 
similar to the one used by Lange.5 The correlation 
functions are then substituted into Tsuneto's6,7 formulas 
for the attenuation to obtain explicit results for the 
attenuation coefficients in the limit of low-frequency 
sound waves. 

Tsuneto's6 calculation of the ultrasonic attenuation 
is based upon the determination of response functions of 
the type 

<DM]>(q,*) = T f dt' I dx' e x p p 2 ( / - 0 - ^ q - ( r - r / ) ] 

X < [ ^ ( r , 0 , £ ( r ' / ) ] > . (1) 

Here, Air J) and B(r,t) are Heisenberg representation 
operators describing an observable quantity at the 
space-time point r,t. The ( } denotes both a statistical 
average and an average over the possible random 
placements and spin directions of impurities. 

The three operators whose correlation functions are 
needed for ultrasonic attenuation are the number 
density 

» ( r , 0 = E ^ ( r , 0 ^ ( r , 0 , (2a) 
spin 

the particle current 

j ( r , 0 = Z { [ (V-V) /2 imJ_^{x 'M{ t , t ) - ] }^r , (2b) 
spin 

3 F. Reif and M. A. Woolf, Phys. Rev. Letters 9, 316 (1962). 
4 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 

1175 (1957). 
5 R. V. Lange, thesis, Harvard University, 1963 (unpublished). 
6 T . Tsuneto, Phys. Rev. 121, 402 (1961). 
7 Equations (3), (5a), and (5b) are different from those em

ployed by Tsuneto in Ref. 6 in that they include the collision drag 
effect discussed by R. W. Morse [IBM J. of Res. Develop. 6, 
52 (1962)]; L. T. Claiborne [Ph.D. thesis, Brown University, 
1961 (unpublished)]; and J. R. Leibowitz [Phys. Rev. 133, 
A84 (1964)]. As these authors all point out, the collision drag 
effect is dominant in the transverse case for the superconductor. 
Tsuneto, in a recent unpublished paper, has applied the work of 
Cohen, Harrison, and Harrison [Phys. Rev. 117, 937 (I960)] 
to include collision drag and thereby obtains our Eq. (5b). 

and the electronic stress tensor 

( ( V - V ' ) < ( V - V ) / i 
r*(r ,0 = E : : ^ ( r V ) * ( r , 0 . (2c) 

spin I 2i 2im ) r ' = r 

For waves with wave vector q pointing in the z direction 
and angular frequency vsq1 the longitudinal attenuation 
constant is, from the calculation of the Appendix, 

iz Aire* [<[n,A^]>(q,2)]2 

aL=— Re 
Pion ŝ q2 l -47rey- 2 ( [^<])(q,£) 

- Re&([AzL,Ar
L])(q,2;)/pi0n». , (3) 

where 
hiL(xj) = (q/z)rzz(t,t) - (zm/q)n(r,t). (4a) 

In Eq. (3), z is to be set equal to vsq—i8, where 8 is an 
infinitesimal frequency just greater than zero. For all 
reasonably low frequencies the shielding is almost 
complete, so that 

47re 2 r r 2 ( [^ /0) (q^)» l . 

For this reason, Eq. (3) may be replaced by 

Q2 f 
a z ^ R e <[T«,r„])(q,2) 

(iz)pionVs I 
C<[rM,»]>(q,«)]2| / r N . (5a) 

<[>,»]) (q,z) J 

In an unpublished report,7 Tsuneto concludes that 
because the transverse electromagnetic response is 
very strong in the superconductor 

z2 

aT=Re- <CAir,Air]>(q,«), (5b) 
izpionVs 

where 
hiT(r,t) = (q/z)T*.(T,t)-mjx(r,t). (4b) 

In our later work, we shall only keep the first term in 
Eq. (4b), since this is the only term which contributes 
at low frequencies. 

The correlation functions which appear in (3) and 
(5) are not quite honest electronic correlation functions. 
Instead, they are correlation functions computed in a 
fictitious system in which the long-range effects of the 
electromagnetic interactions are turned off. Therefore, 
we omit the effects of Maxwell's equations in our cal
culations of electronic correlation functions because 
these effects are already included in Eqs. (3) and (5).8 

8 The physical source in the denominators of Eqs. (3) and (5a) 
is the screening of the interaction. The importance of this screening 
has been emphasized by M. Takimoto, [Progr. Theoret. Phys. 
(Kyoto) 25, 327 (1961); 26, 659 (1961)]. 
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We use a Green's function approach9-11 to the deter
mination of response functions ([^4,J5])(q,2). In this 
approach, it is natural to calculate time-ordered 
products like ([_A(r7t)B(r//)']+) for real values of it 
and if being between zero and T, where T is the 
temperature expressed in energy units. The + indicates 
a time-ordering operation in which operators with larger 
values of it appear further to the left. The definition of 
an equilibrium ensemble implies a periodicity condition 
upon this time-ordered product which can be expressed 
by writing 

<D4(r,0£(r7)]+> 

= -T I -p-Y. exppq- (r-rO-«,(*-0] 
J (2w)z v 

X(ZA,B1)M. (6) 

In Eq. (6), the sum over v covers all even integers and 
zv=iirvT) where T is the temperature in energy units. 

In Ref. 11, the relation between the Fourier coeffi
cients of Eq. (6) and the response functions of Eq. (1) 
are discussed in detail.12 I t turns out that both quantities 
can be discussed in terms of the spectral weight function 
X"A,B(<1,O))- W e h a v e 

(DWfo 
C da 

J IT 

dcoX"A,£(q,co) 

Z — 03 

f do)X"A,B(q,o>) 

J IT Zv — O) 

(7a) 

(7b) 

Therefore, it follows immediately that 

(C4,5])(qA)=([.4,5]),(q). (8) 

Equation (8) serves to define the Fourier coefficients 
in terms of the response function ((^4 ,B)) (q,z). However, 
one can use a theorem discussed by Baym and Mermin13 

to travel the opposite route. These authors indicate 
that the knowledge of (D4,£])(q,z„) for the special 
points zv=iirvT is sufficient to determine (D4,£]}(q,s) 
by an analytic continuation procedure when we employ 
the extra condition that ([^4,iT])(q,s) has no singular
ities at 2=00. 

Therefore, in this paper our basic calculational 
procedure is a two-step process. First, we use the 
Green's function methods to calculate the Fourier 
coefficients of Eq. (5). Secondly, we use the analytic 
continuation of these Fourier coefficients and Eq. (8) 

9 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959). 
10 A. A. Abrikosov, L. Gor'kov, and I. E. Dzyaloshinski, 

Methods of Quantum Field Theory in Statistical Physics, translated 
bv R. A. Silverman (Prentice-Hall, Inc., Englewood Cliffs, New 
Jersey, 1963). 

11L. P/Kadanoff and G. Baym, Quantum Statistical Mechanics 
(W. A. Benjamin, Inc., New York, 1963). 

12 See particularly Chap. 8 of Ref. 11. 
13 G. Baym and D. Mermin, J. Math. Phys. 2, 232 (1961). 

to find the response function needed in evaluating the 
ultrasonic attenuation. 

In Sec. 2 of this paper, we translate the model we are 
using into Green's function language by defining an 
approximation for a Green's function g in the presence 
of an electromagnetic forcing field. Section 3 includes a 
brief rederivation of relevant properties of the Green's 
functions in the absence of the external fields. The 
solution obtained is identical to that of Abrikosov and 
Gor'kov, except that we indicate slightly more explicitly 
the analytic properties of the parameters in the Green's 
function. In Sec. 4, we expand g to first order in the 
fields, thereby obtaining solutions for the correlation 
functions needed in the evaluation of expressions (5). 
These solutions involve frequency summations, which 
summations are performed in Sec. 5. Finally, Sec. 6 
includes a brief presentation of formulas for the 
low-frequency case and an explicit evaluation of the 
low-temperature limit. 

II. APPROXIMATION FOR g 

In our calculation it is convenient for us to use four-
component creation and annihilation operators14 

^ ( r ) = -

"*t(r)l 
Mr) 
M(r) 

W(r) (9) 

*H*) = (M(T)M(dM*)MT)). 

We also use the matrices 

0 

\0 a J 
(10a) 

where o"p is the usual set of 2 X 2 Pauli spin matrices and 
0 is a 2X2 null matrix and 

r i 

T2 

T3 

(10b) 

where 1 is the two-dimensional unit matrix. 
The most basic object in our calculations will be the 

4 X 4 matrix Green's function 

g(l,l';U,W)-
1 (DSM>(l)*t(i')]+) 

(11) 

14 These four-component spinor operators have been used by 
R. Balian. See, for example, Proceedings of the 1963 Ravello 
Spring School of Physics (Academic Press Inc., to be published). 
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formed from the spinor creation and annihilation 
operators. Here ( } stands for both a statistical average 
and an average over positions and spin directions of the 
impurities. Following the usual technique,9,11 the 
Green's function is defined for pure imaginary times in 
the interval 0<U<T~K The + stands for a Wick 
time-ordering operation in which the operators are 
ordered according to the relative size of it. The S has 
been introduced as a calculational device in order to 
generate the higher order correlation functions which 
will be needed in the transport analysis. In particular, 
we choose 

•S^exp] — H (*T)-1 

d2[_U(2)n(2) + Wij{2)rij{2)~] , (12) 

where n and r# are the operators of Eq. (2), while 
U(2) and W(2) are c number functions which we shall 
vary at our convenience. 

For example, 

*tr-
fig(l,l;tf,WO 

W{2) ?7=TT=0 

= <(»(l)»(2))^)-<n(l)X»(2)>. (13) 

The term in (n(l))(n(2)) is irrelevant in all our calcula
tions of response since it only contributes at precisely 
zero frequency. The other quantity on the right-hand 
side of (13) is one of the correlation functions needed in 
the calculation of « L . 

We now write down the basic approximation used in 
the determination of g ( l , l ' ; U,W). This is precisely the 
same approximation as employed by previous authors,2,5 

although it is expressed in somewhat different language. 
We write the matrix equation 

/ . 

<iy)-i 

diri(l,l; U,W)g(l,Y; U,W) = 5 ( 1 - 1 ' ) , (14) 
' 0 

where 

g-Ki.i'; u,w) 

/Vi v1-v1' 
= * — + - — h a T , - 0 - ( 1 ) T , — 

I dh \2m 1 2i 
H I ) 5 ( 1 - 1 0 

- A ( l ) « ( l - 1 ' ) - S » ( l , l ' ) - 2 . ( 1 , 1 ' ) . (15) 

The first term in Eq. (15) describes the propagation 
of a free particle through the potential field given by 
U and v. The next term is 

a ( l ) = - ; | g | r 3 g ( l , l ) r 3 ) (16) 

which describes the interaction causing the supercon
ductivity (coupling strength | g | ) . The remaining two 
terms describe the effects of normal and spin-dependent 
scattering processes, respectively. 

If we assume a zero-range interaction between 
electrons and impurities, then an electron at the point 
r sees an interaction potential 

V(t) = j : Lvn5(t-rj)+vM*-rj)$r«pl, (17) 
3 

where vn and vs are the strength of the normal and 
spin-flip interaction while Sy and tj are the spin and 
position of the yth impurity. This interaction can be 
written in second quantized form as 

with 

V=h £ ^ ( r y J & n r s + v . a . S y X r y ) , (18) 

o = [ ( l + r . ) / 2 > + [ ( l - T 8 ) / 2 > n K r i . (19) 

These normal and spin-flip scatterings lead to the 
S n and S8 of Eq. (15). In lowest order,15 

S»( l , l0 = (« - rn /^ jp )8 ( r i - r i , ) r ig ( l , l0 r8 , 

2 , (1 ,10= ( r f . / f » ^ ) 8 ( r i - r 1 0 i o - g ( l , 1 0 « -
(20) 

Here, Tn and T8 are the rates for normal and spin-flip 
scattering for an electron at the surface of the Fermi 
sphere in the normal state: 

^ n^[_\i)n\2mpF/Tr}ni, 

r s = [ | v, 12mpF/ir2ni(Sj(SJ+1)), 
(21) 

where pF is the Fermi momentum, m the electronic 
mass, nr the impurity density, and (Sy(5y+1)) the 
average of Sy2. 

III. EQUILIBRIUM GREEN'S FUNCTION 

For the case U=W=0, the solution to Eq. (14) is 
well-known2'5 so we shall only very briefly present 
results here. In this case, 

S ( l , l ' ) = ^ £ rjfi 
* J (2T 

d3p 

(2T? 
,(P) 

X e x p [ » p ( r i - r i ' ) - M , ( / i - / i ' ) ] , (22) 

where, as before, zv=iirvT, but now the sum is over all 
odd integers. Then, Eq. (14) may be written as 

r„ r 
fc(p)]~1 = z^-«i»T3-A T3 / depg,(-p)n 

where 

£.1 
2TT3 

ep=f/2m-ix. 

dePgv(v)Tz«, (23) 

(24) 
15 The derivation of these terms can be achieved by a generaliza

tion of the type of analysis used in Sec. 39 of Ref. 10 or in Chap. 1, 
Sec. 4 of Ref. 5. 
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We have used the fact that only particles with momenta 
near the Fermi surface contribute to write 

r dsp mpF r do, r 

J (2TT)3 2TT2 J 47r i **' 
(25) 

with dtt being an element of solid angle. 
Next, we must analytically continue g„(p) to the 

function g(v,z). The latter must satisfy g(v,zv)=gv(p). 
The obvious way of meeting this requirement is to 
demand that g(p,z) satisfy Eq. (14), i.e., that 

Lg(P,z)T1=:z-6pTz-A r3 / depg(p,z)TS 

2T J 

A N D I . I . F A L K O 

while Eq. (32) implies that u(z) and e(z) satisfy 

t(z) = &(rn+T.)+z{lu(z)J-l}W/u(z) 
= U(rn-T8)+A{tu(z)J-l}W, 

z/A=u(z){l- (ir$/A)l£u(z)J-1]"1/2}. 

(35) 

(36) 

T8ct r 
/ <kpg(p,z)a. (26) 

2TT3 J 2TT3 

To solve Eq. (26), we assume that 

C r K P , * ) ] - 1 - ^ ) -epT9-&(z)T*ri. (27) 

Then, A has the form 

A=AT!<ri, (28) 

where A is real. The integral in (26) can be performed 
to give 

We shall need to know the analytic structure of ti(z), 
e(s), of co (2), A (2) for our further analysis. The structure 
of these functions is derivable from the analytic 
structure of g(p,z), which is as follows: 

(i) g(p,z) is an analytic function of z except for a 
cut along the real axis. 

(ii) The discontinuity across the cut comes totally 
from the fact that Img(p,2) changes sign as z crosses 
the real axis. 

(hi) The imaginary part of the usual Green's function 
(not the matrix function) is never positive for z lying 
just above the real axis. Thus 

or 

Im tr[( l+T8) /4]g(p,s) I « , + « < 0 

cb(z) + e 
Im- - < 0 . (37) 

/ 

co (2) + A (2) r 10-1 
degfaz) = -vi ~ , (29) 

.€(z) 

where e(z) is the square root defined by 

6(Z) = {[co(Z)]2-[S(2)J}>/2 (30) 

and the condition 

lme(z )>0 . (31) 

Equations (26), (27), and (29) now define &(z) and A(z) 
by the equations 

Tn+TsSi(z) 
co(z) = z + i -

S(z) = A+i-

2 «(«) 

r»-r. A(Z) 

2 i(s) 

(32) 

[a(s)]»-6*-[a(s)]»-
Using these facts, we can conclude that 

(i) A(z), co(2), €(2), and u(z) are also analytic except 
for cuts along the real axis. We call the values of these 
functions when z lies just above the real axis, z=o)-{-i8, 
A(co), co(co), etc. 

(ii) For A, co, and hence u the discontinuity across 
the real axis is just given by the imaginary part of the 
function, i.e., 

A(co-;5) = A*(co), 

co(co—^5)=co*(co) , 

u(a>-id)=u*(o)), (38) 

i ( c o - « ) = - i * ( a > ) , 

{ [^ (co- f5) ] 2 - l} 1 / 2 =-{[ [^(co) ] 2 - l ] 1 / 2 }* . 

The first three lines of Eq. (38) are directly derivable 
from the fact that g(p,co) obeys a relationship analogous 
to (38). The two last lines follow from Eqs. (32) and 
(36). 

(hi) By taking the e integral of Eq. (37) and employ
ing Eq. (29), we find 

We do not use co and A as our basic functions. Instead, 
we employ e(z) and 

(33) 

- I m | t r ( l + r , ) / deg(V,z) I< z=oi-\-ib 

= Re-

u(z)=£o(z)/A(z). 

From Eq. (21), it follows that 

co(s) = ~e(z){u(z)/[[u{z)J-1]1/2} , (34a) Then Eq. (36) implies 

A(2) = e(z)/{[u(z)J-\yi\ (34b) Tm^(co)>0. 

u(a)) 

{ [ ^ ( « ) ] 2 - l } 1 / 2 
> 0 . (39) 

(40) 
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IV. SOLUTION FOR £ 

In the previous section, we calculated g(l , l ' ; U,W) 
for U=W=0. For our ultrasonic attenuation calcula
tions, we need the first order terms in the expansion of 
g in a power series in U and V, i.e., 

To calculate the <£'s we notice that16 

£.(1,2;1',2) 

= 8g(l,V)/SU(2) 

£n(l,2;l',2) 

Jg(l,l';U,v) 

SU(2) (7=Tr=0 

f d*p dsq 

»+.»- J (2TT)3 ( 2 T ) 3 

Xexp{ip«(r i—ri ' )+tq-[J(« , i+ r i ' )—'a] 

—iz+(h—h)+iz-(h'—k)} • (41) 

• / . 

dWi'g(i,i) —-*(i ' , i ' ) 
517(2) 

= g(l,2)rtf(2,l)+ / rflg(l,l)__g(l,l') 
J *Z/(2). 

»Tn /• . . . 5g(I,l ') 
J i W l ' g ( l , l ) 8 ( f 1 _ f 1 ' ) r r T 7 ^ r r t f (l '.l ') 

mpF 

mpF 
fdidi'g(i, i )«(f i - f i ,> 

In Eq. (41), z±^iirv±T and the sum over z>+ and J>_ 
ranges over all odd integers. The variation with respect 
to Wi3{2) yields 

£ r i .(l ,2; l,,2) = p g ( l , l 0 / 8 ^ ( 2 ) > . ^ o . (42) 

We define <£T(p,q,2+,z_) in a manner directly analogous 
to the definition of Eq. (41). These two <£'s are sufficient 
for calculating all the correlation functions needed for 
transport since, for example, 

517(2) 

« fig(M-) 

3 5Z7(2) 

X « * ( l ' , l ' ) . (46) 

<!>,»]> fa 
(2TT)* 

£ tr[r8£»(p,q,24-,2-)] 

z^—iir{v+—v)T. 
(43) 

For notational convenience, we define the quantities 
(k4,J3])(q,%,£_), which have the property that 

<D4,2T]>(q,0 

= T E < [4 ,B]>(4 ix (*++ ,0 r ,«n ' + r ) . (44) 

Thus 

(Cw>w 

<[>.i, 

<[*•#, 

, we have 

])(q,&H2L_) 

- / 

w])(q,24-,z-) 

- / 

- / 

TM])fe2+^_) 

J3£ 

( 2 ^ 

| trr3£n(p,q,2-f,s_), 

M i , 
| t r r 3 £n(p,q,2+,2-

Jtrr3<fir< y(p,q,%,0, 

-) 

The equation for £Tij is identical in form except that 
for £Tij the inhomogeneous term is 

KV 2 - V 2 \ / V 2 - V 2 ' \ 1 
) ( — — h(l,20rtf(2,l ' ) . (47) 

2^ / » \ 2%m /j J2'==2 

The term in 5&(1)/5U(2) in Eq. (46) reflects the 
presence of a collective mode like the one originally 
discussed by Anderson. Tsuneto6 has shown that this 
collective mode does not affect the ultrasonic attenua
tion for the case of ordinary impurity scattering. 
Consequently, we neglect &&(l)/dU(2) in Eq. (46).17 

The Fourier transform of Eq. (46) is introduced with 
the aid of Eq. (41). Thus, 

£n(p,q,*t-,2L.) 

= g(p+q/2,z+){ }g(p-q/2,zJ), 

f &p' 
I ——-r3£„(p',q,%,2L>3 

•J (2wY 

TTV8 

{ > = r,-
irTn f d*p' 

mpF J (2x)3 

f &p' 
J a-£w (p ' , 

J (2TT)3 3mpF J (2ir) 
q3s+,0«. (48) 

(45a) 

- / 

(45b) 

dzp pipj 
h t r r 3 £ T W (p ,q ,2^ ,0 . (45c) 

(2TT)3 m 

In the transverse case, in which we wish to calculate 
£Txz, the analogs of the final two terms in Eq. (48) do 
not contribute since it is impossible to form a scalar 
from £Txz and a wave vector in the z direction. Thus, 
the transverse correlation function can be obtained 
immediately by substituting expression (47) into 
Eq. (45c) and then performing the momentum integral. 

16 Y. Osaka, in J. Phys. Soc. Japan 18, 877 (1963), has stressed 
the importance of constructing approximations of <£« and £T that 
satisfy gauge invariance, i.e., the differential number conservation 
law. Baym and Kadanoff [Phys. Rev. 124, 287 (1961)] have 
indicated why approximations like (46) do, in fact, include all 
conservation laws. 

17 When this term is dropped, the solutions for £ are no longer 
gauge invariant. 
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The momentum integrals needed to calculate the 
response functions denned by Eq. (45) can be evaluated 
directly, if we assume q2/2m<^fi, so that 

r ay mpF C 

J (2TT)3~ (2WY J ' 

dedttj 
(2TT)3 (2TT)3 

ep+q/2^ ep+%vFq cos0, (49) 

where 0 is the angle between p and q. Thus, we find 

< [ r« , r« ] ) (q ,2+ ,0 

dtp px
2p*2 

PF2 

= — [ 1 - . ( S + ? 0 ] F - 4 I 
-irq 

with 

F - t a n - J F 
i F 3 + _ — ( F - X ) 

X - t a n ^ F 
(55) 

(2TT)3 m2 
-g(p+.q/2, 3+)r 8 g(p-q/2 , z_) 

= — [ l - ^ C ^ O ] ^ ^ ! ^ 8 + ^ - ( F 2 + l ) t a n ^ F ] 
2<7cq 

= ^ [ l - C ( 2 + , £ L - ) ] F ^ [ l - g ( F ) ] , 
37T̂  

(50) 

X=X(q,Z + )z_) = 9 ^ / [ r „ - C ( Z + , z _ ) r J . (56) 

V. FREQUENCY SUMS 

To form the needed correlation functions, (D4,5]} 
X(q,z), it is necessary to perform frequency sums on 
(£A,Bj)(q,z+,sJ). According to Eq. (44) 

<tX-B]> («,«"-?> 
= TE <C^,5])(vV(,++,)r,ix,+D), (57) 

where the sum over v+ covers all odd integers and v is 
an even integer. This sum may be evaluated by noticing 
that all the singularities of (£A,B~])((l,z+,Z-) appear for 
real values of z+ and &_. Hence, this function has a 
spectral representation 

where 

C(z+,z_) = 
w(z+)w(z_) — 1 

<D4,£]>(q,2+,Z_) 

[ W ( Z + ) 2 - 1 ] 1 ' 2 [ M ( 0 2 - 1 ] 1 / 2 

w (z+)« (z_)—E (z+)S (z_) 

• / 

Jco+ ĉo_ XA t ̂  (q,a>+,co_) 

(51a) 

and 

and 
Y=Y(z+,z„,q) = iqvF/l~e(z+) + ~e(zJ)-], (51b) 

g(F) = f F~3{ - F + ( F 2 + l ) t a n ^ F } . (52) 

2ir 2T (Z+—W+)(Z. 

Here, x is the real quantity 

-) 
(58) 

-<[i l ,5])(q,«4.+t«,ojL-+«) 

~ <D* ,£]} (q, co+ ~ «, w. - i8) 
+<C^,S])(q,«Lf.+t8,«--t8) 

+<[i4,5])(q,aM.-t8,«_+«). (59) 

The longitudinal correlation functions are a bit 
harder to evaluate because Eq. (48) is an integral 
equation. To solve this equation, we integrate Eq. (48) 
over all p and try a solution for £ n of the form 

Equation (58) may be substituted into Eq. (57) and 
the summation performed with the aid of the Sum-
merfeld-Watson sum formula. The result is 

/ ( 2 ^ 
•<£n(p,q,*f,z-) 

(ZA,Bl)(q,iTvT) 

' doo+ dai— 

-I 2ir 2w 
t / («Lf)-/(«L.)J 

= |r8<C«,w])(q,2Lf.,z«)+^20'i/(q,2+,2L.) 

XAtB(q,co+,uJ) 

o)+—i'jrvT~a)-
(60a) 

and a solution of a similar form for fdsp£Tzz(vA,z+iz-)' 
After considerable algebra, the correlation functions 
emerge as 

<[*,»]> (q,a+,2_) 

m2 X t an" x F 
= — [ 1 - ^ ( ^ , 0 ] - - — — , 

wq X—tan lY 

p^m 

irq 
[ l - c ( z + J z _ ) ] X F -

F - t a f f ^ F 
2_ 

X - t a n ^ F ' 

(53) 

(54) 

with f(o)) = [_l+e<a/TJ~1, The analytic continuation of 
Eq. (60a) is simple and obvious: We need to construct 
a function ([A,Bj) (q,s) which agrees with the right-
hand side of (60a) at all the special points z^=zv=iirvT 
for even integral v. This function should have no 
singularity at z= <*>. Clearly a possible choice of such 
a function is 

(LA,B-])(q,z) 

' $03+ dcx). 
x / 

XA,B(q,o)+,a)J) 
„ „ UM-f(<*-)l • (60b) 
2ir 2ir co+—-£—oo— 

According to Baym and Mermin,18 it is the only such 
function. 
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The low-frequency limit is 

(LA,B-$(q,z) 

The right-hand side of Eq. (60b) can be rewritten in 
terms of the known functions ( [ / ! ,£] ) (q,2;+,3_) by 
making use of the definition (59) of x in terms of these 
functions. This gives 

dec 
:/(co){<Ci4,5]>(q,o)-tf,a)-a) 

2m 

-<C^,5]>(q, u+i8, <o-*)+<[X5]) (q , a>+z, a>-«) 

-0 ,^]>(q ,«+«,«+«)} . (61) 

Equation (61) should permit the calculation of all 
the response functions needed for the attenuation 
coefficients. 

Unfortunately, Eq. (61) is wrong. I t is wrong because 
of a curious conditional convergence18 of the sum and 
integral in fde^y <£(p,q,s+,2_). In the interchange of 
orders of integration and summation, we get an extra 
spurious term which comes from very large z+ and e. 
Since this term comes from high energies, it is almost 
independent of z—it does not vary appreciably through
out the entire range |S;|<3CM- Another consequence of 
the high-energy source of this term is that it can be 
estimated perfectly well from the normal-state Green's 
functions. 

Thus, we write instead of (60b) 

(lA,B-])(q,Z) = (\:A,Bl)« 

' da>+ dot- X^fjB(q,a;_}.,w_) 

+ 
where 

/ 2ir 2ir s_—a>++co_ 
C/(co+) - / (< *_ ) ] , (62) 

<[«,»])»= -mpir/r2, 

(lTxz,TxJ)y,= -§NpF
2/m, 

(63) 

are the high-frequency contributions to their respective 
response. These terms should be added on to the right-
hand side of Eq. (61) in order to make that equation 
correct. 

VI. FORMULAS FOR LOW-FREQUENCY 
ATTENUATION COEFFICIENTS 

Equation (61) can, in principle, be used to study 
attenuation for all frequencies. The algebraic complexity 
is so fearsome, however, that we shall limit ourselves 
to the case of relatively low-frequency sound. Therefore, 
we expand Eq. (61) about 2=0 . We can simplify this 
expansion by noting that, for all our cases, ([A,B~]) 
X (q,z+,zJ) is even under the interchange of z+ and z— 

18 This behavior is noted by Tsuneto (Ref. 6) and discussed in 
detail in Ref. 10, p. 310. 

H D W o o - f —/(«) Im<D4,£])(q, t»+# , a>+id) 

' do) df(o)) +*/ 
2TT dco 

-{Re([ i4,J5])(q, co+iS, co+tf) 

- < [ 4 , 3 ] > ( q , « + « , « - « ) } . (64) 

Therefore, Eq. (64) may be simplified to read 

{lA,Bj}(d,Z) = (LA,Bj)x-iz izj 
do) d/(co) 

2w do) 

X<D4,J3]>(q, « + « , a-id). (65) 

By employing Eq. (5b), (50), (52), and (65) we can 
now directly read off 

qNmvp 1 C df(o)) 

^ ion^ ' s 2 J do) 

where 
X [ l - £ ( y ) ] , (66) 

c (co) = c (co—id, co+id) 

= - C I « ( W ) | » - I ] / I I : « ( W ) ] » - I I , (67) 

y=y(ca) = qvF/[2 Imi(co)] 

= qvF/{2 Im\£&(<*)T-Z&(fi>mi*} • (68) 

The longitudinal case is a bit more complex. From 
Eqs. (5a), (63), and (65), we find that the low-frequency 
attenuation takes the form 

q2 f PF2 

aL = Re <[r „, r „ ] ) (q,z) - 2 < [ T M , » ] > (q,s) 
izpionVs I Sm 

•»]>(q,») • (69) 

Equation (65) may be employed together with Eqs. 
(53), (54), and (55) to evaluate (69) as 

qNmvF 1 r df(o)) 
aL== / j w [1 —^(co)] 

Pion^s 2 J do) 

x-

with 

x(a))+3y-2Zx(o>)-yl 

x(oo) — t an - 1 ^ 

X R t a n - ^ - y - ^ - t a n - ^ ) ] , (70) 

x(a)) = X(q, o)—id, o)+id) 

= qvF/[rn-T8c(o))']. (71) 
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For an elementary check of this formula, consider 
the normal state for which 

y(u) = x(a>) = qvP/(Tn+Ts) = ql; (72) 
and thus 

mNvF (1 (qiytsmr^ql) 
-X 1 

Pint's/ 13 (ql) — tan 1(ql) 
(73) 

which is Pippard's19 formula for the longitudinal 
attenuation constant. 

This comparison enables us to see a relatively simple 
interpretation of Eqs. (66) and (70). We can interpret 
y(u>) as q times an effective frequency-dependent mean 
free path. Then Eq. (66) is identical to Pippard's 
result for the longitudinal case, except for the factor 
[1 — c(u>)~], which is just a typical superconducting 
coherence factor. Our results in the transverse case are 
essentially different from Pippard's because the trans
verse electromagnetic response is qualitatively larger 
in the superconductor. In the transverse case, the 
normal attenuation constant as given by Pippard19 is 

qNmvFr\~ g{ql)-\l 

onvs L g{ql) Aql' 
(74) 

P'xoviVs I 

where g(ql) is given by Eq. (52). 
There are several relatively tractable cases in which 

Eqs. (66) and (70) may be evaluated analytically. For 
example, when r w » r & and Tn^>A, x(o)) = y(o)) = qL In 
this situation,20 

where 

aL/aL»=(p»/P), 

aT/aT»=(p»/p)g(ql), 

(75) 

(76) 

1 
P»/p=—\fa D-c(«)] (77) 

2 J do) 

can be viewed as the proportion of "normal electrons" 
effectively acting in this attenuation process. Notice 
that this proportion is independent of q. [_Note added in 
proof. V. Ambegaokar and A. Griffin have independently 
derived Eq. (75) and numerically evaluated pN/p. This 
work is reported in the Proceedings of the Ninth Low-
Temperature Physics Conference (to be published). 
We would like to thank these authors for pointing out 
several errors in the preprint of our work.] 

19 A. B. Pippard, Phil. Mag. 46, 1104 (1955). 
20 The extra factor of g(ql) which appears in the transverse 

attenuation in Eq. (76) results from the greatly enhanced elimina
tion of magnetic fields in the superconductor. L. T. Claiborne 
(Ref. 7) found this factor both experimentally and theoretically 
for the superconductor with nonmagnetic impurities. This type of 
effect was qualitatively predicted by R. W. Morse in Progress in 
Cryogenics (Heywood and Company, Ltd., London, 1959), Vol. 1, 
and Bardeen and Schrieffer, in Progress in Low Temperature 
Physics, edited by C. J. Gorter (North-Holland Publishing 
Company, Amsterdam, 1961), Vol. I l l , p. 170. 

The integrations in (66) and (70) may be performed 
analytically in the limit of low temperatures. When 
T S /A>1 , there is no gap in the energy spectrum, so 
that we can write d//dco = — 8(cci). At co = 0, 

*(*>) = 2 ( A / r . ) * - l 

y(u) = ql (78) 

x(co)=^/[rn+rs-2A2/rj, 

p* /p= 1 - ( A / I \ ) 2 (79) 

LaT/aT
Ny(pN/p) = g(qD 

so that 

and 

- > 1 for ql<a, 
->3w/4ql for ql»l, (80) 

while 

ZaL/aL»l/(pN/p) 

= [ 1 - GzO"1 t a n ~ 1 ( ? 0 ] [ l + 6 A 2 / ( r s ^ / ) ] 

l - C W - 1 - 2 A 2 / ( r s ^ ) ] t an -%/ ) 

-> 1 for ql«l and for g / » l . (81) 

On the other hand, when ( A / r s ) > l , there is a gap 
in the energy spectrum in the range — a>g<<a<a>g9 

where 
co ,=A[ l - ( r , /A) 2 / 3 ] 3 / 2 . (82) 

Just above the energy gap, 

c((o)=i-|(«-«a)r.-«x-1/8, 
y(a>) = yo=qvF/[Tn-Ts+2A(Ts/Ayi^, (83) 

x(a>) = qvF/[Tn—Ta], 

so that 

(«r/W*)/0>Vp)=f° 1[^~g(yo)] g(g/) 

r»+r. 
r„-rs+2A(rs/A)1/3 

for y 0 « l , ql«l, 

3xr„-rs+2A(rs/A)1/3 

qvF 

Finally, 

r„+rs 

for g / » l . (84) 

for ;y0«l and ? / « l , 
(PN/P) r„-rs+2A(rs/A)1 '3 

= 1 for yo»l. (85) 
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APPENDIX: DERIVATION OF FORMULA FOR 
ATTENUATION COEFFICIENT 

Let21 $(r,t) be the displacement for ions in the 
neighborhood of r9t. If the wavelength of the sound is 
much greater than the interatomic spacing, then ^ is 
perfectly well defined. Then, F—ma for the ions is, 
for longitudinal fields, 

M(d*/dP)t(r,t)==+ZeE(r,t)+¥Ur,t), (Al) 

where E is the total electric field, Ze is the ionic charge, 
and ¥i,e is any other force produced by the electrons 
which act on the ions. 

For the electrons 

(« (d j /* ) ( r , / )+V. r ( r , 0>= - i \ teE(r ,0+f . ,<(r ,0 , (A2) 

where fe>l- represents the residual force produced by the 
electrons on the ions. Newton's law, action=reaction 
implies that 

( W 2 \ D Z = - F , . . , (A3) 

so that (Al) becomes 

d2 Z / r <Q(r,/) -iv 

dt2 N\l dt J / 

or, if $(r,t) varies as 

+ (r,t) = + (q,z)ei*"-i«, (A4) 
(Al) becomes 

- J f ^ ( r , 0 = - ( Z / i V ) < [ - f w q ( r , 0 + V . T ( r , 0 ] > . (AS) 

Following Tsuneto,6 we compute the right-hand side 
of (A5) by going into a coordinate system which moves 
with the ions. Then, in this system, we have an effective 
Hamiltonian for the electrons 

3C=3Co+3Cr, (A6) 

where 3Co includes all electron-electron interactions 
including the Coulomb interaction. 3Cj is the effective 
Hamiltonian which is produced by the transition into 
the moving system: 

3Ci= I d^4(r,t)'tizmj(r,t)-iq'T(r,t)']. (A7) 

Expression (A5) includes no electromagnetic interac
tions since these all appear in 3Co. No electromagnetic 
fields are directly produced by the transition into the 
moving system since this transition maintains average 
charge neutrality. 

The transition into the moving system affects the 
right-hand side of (A5) in two ways: First there is the 
explicit change in the meaning of j and r. From this 

21 The results of this Appendix grew out of many discussions 
that we have had with Dr. G. Baym. The calculational methods 
used here are very similar to ones which he derived, although our 
specific calculation is somewhat different. 

explicit change, we find6 

(—izmjiirfi+VjTijfafyiixed 

+qjqj(t>k(rJt)(Tik)+qjqi(t>k(r,t)(Tkj) 

+(izmji (r,t)+VjTij (r,t))moving, (A8) 

where all repeated indices are to be taken as variables 
for summation. 

The first four terms on the right-hand side of (A8) 
are already of first order in <£. Therefore, they can be 
calculated to zeroth order in3Cj. The last term in (A8) 
vanishes when 3Cr —> 0. Therefore, it should be taken 
to first order in 5Cj. Thus, we find that the right-hand 
side of (A8) is 

- s 2 w ^ t < r , 0 + { 2 ^ ^ ( r , 0 ] + g V , < r , 0 } ( ^ w ^ 2 / 5 ) 

+<CMy]>(q,2)2Vy(r,0, (A9) 
where 

Hr,t) = lqjrij{t,t)/z']-mji{xJt). (A10) 

We substitute (A9) into the right-hand side of (A5), 
drop the first term in (A9) because it is of relative 
order Zm/M, and find 

PionS2** (q,*) - { 2qj[q • </> (q,z)]+q2<t>i (q,z)} (mNvF
2/5) 

+ ( C W ( q ^ ( w ) = 0. (All) 

In the longitudinal case, <j>i is parallel to q. We take 
these both to point in the z direction and then find, from 
(All ) , the sound-wave dispersion relation 

PiouZ2^lNmvF
2q2HlhiLMLl){^)z\ (A12) 

hI
L(r,t)=(q/z)rzz(r,t)-(mz/q)n(rJt). (A13) 

[ In writing (A13), we applied the number conservation 
law d^/6V+V-j = 0 and dropped a term of relative 
order m/M.2 From (A12), it follows at once that the 
longitudinal attenuation constant is 

iz 
aL= - R e <[ArL,AiL])(q,2). (A 14) 

PionVs 

The correlation functions in (A14) are honest 
electronic correlation functions including all effects of 
electron-electron Coulomb interactions. Now, we pro
ceed to calculate in a more explicit fashion the effects of 
the Coulomb interactions. 

With this aim in view, we notice that all our correla
tion functions may be viewed as variational derivatives, 
e.jz* 

<[T</,T*i]>(q,s) = lKn3)/^Wk{]u{^z), (A15) 

where the expectation value is computed in a system 
with Coulomb interactions. 

In order to state our problem in its most general 
form, we consider (A(l))u,v and (A(l)Yu,v, which are, 
respectively, expectation values of the same operator 
A (r,Q in systems with and without Coulomb interac-
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tions. In each case, the expectation value is to be 
computed in the presence of a forcing term in the 
Hamiltonian 

A N D I . I . F A L K O 

When A = n, (A21) reduces to 

<[»,*]>'(q,*) 
<[>,«]> (q,*) = 

53C= / rfr[?7(r,0»(r,/) + F(r,05(r,0], (A16) 

where V(r,t) is a c-number function of space and time 
and B(t,t) is an operator. 

In our calculations, we employ a generalization of 
the random phase approximation (R.P.A.),22 in which 
we say that the total effect of introducing the long-
ranged part of the Coulomb interaction can be taken 
into account by making the replacement 

U(r,t)-+Ue«(T9t) 

= U(i,t)+ fdV-^—ndO)) (A17) 
J J r—r J 

wherever U appears in the theory without the long-
range interactions. We use a prime to denote correla
tion functions in the fictitious system. Because of 
(A16) 

8(A)'\ 
<Di,2fl>'(q,*) = 

l-^e2q-\{n,n~])f{%z) 
(A22) 

which is a familiar R.P.A. result. By substituting 
(A22) into (A21), we find 

<D4,*]>(q,s) = 
<Di,»]>'(q,*) 

1 — 4we2q~2([n,n])' (q,s) 
(A23) 

{lA,nJ)'(q,Z) = 

<[»,«]}'(q,z) = 

<[»,5])'(q,2) = 

SV 

8(A)' 

Now, consider 

<LA,BT>(q,z) = \ (q>Z) 
I SB Su 

L bB JUQU 

r b(A)-[ r5UM-] 
+ — M 

<-8Uei(Jv SV J 
(q,2) 

8U 

8{n)' 

SU 

8{n)' 

SV 

(q,z), 

(q,z)> 

(q,z) , 

(q,*). 

= <DW(q,*) 

4«2 

(A18) 

+<[^,»])'(q^)—-<[»,S]>(q,«). (A24) 

If we apply (A24) to the special case A = n, we find 

<[n,2?]>'(q,*) 

Now consider the system with Coulomb interactions. 
Our assumption that the Coulomb interactions only 
appear through Ueu implies that 

5(̂ 4) 

SU, 
and 

eff 

SA 

SV 

5(A)' 
(q,s) = 

v SU 
(qjZ) = <D4,«]>'(q,s) (A19) 

(C«,-B])(q,z) = 
\-^e>r\[n,n-})'{cL,z) 

so that (A24) becomes 

(A25) 

(A26) 

Also, 

is given by 

MA)' 
(q,z) = - — -

<7efi 57 
HDW'fa,*)- (A20) 

5Z7 
(q,2) = <[i4,»])(q,z) 

<[i4,n])(q,2) = — - ( q , * ) — - ( q , * ) 
<5£/eff $U 

8A 

dUe 
-(q,*) 

47re2 

1+ <[»,n]>(q,*)}. (A21) 

22 P. Nozieres and D. Pines, Nuovo Cimento 9, 470 (1958). 

To derive Eq. (3) of the text, we substitute (A26) 
into (A14).23 In the text, we have implicitly assumed 
that all correlation functions are to be evaluated in the 
system without long-range correlations. Hence all 
primes are left out in the text. 
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